Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types

نویسندگان

  • Kyle M. Loh
  • Angela Chen
  • Pang Wei Koh
  • Tianda Z. Deng
  • Rahul Sinha
  • Jonathan M. Tsai
  • Amira A. Barkal
  • Kimberle Y. Shen
  • Rajan Jain
  • Rachel M. Morganti
  • Ng Shyh-Chang
  • Nathaniel B. Fernhoff
  • Benson M. George
  • Gerlinde Wernig
  • Rachel E.A. Salomon
  • Zhenghao Chen
  • Hannes Vogel
  • Jonathan A. Epstein
  • Anshul Kundaje
  • William S. Talbot
  • Philip A. Beachy
  • Lay Teng Ang
  • Irving L. Weissman
چکیده

Stem-cell differentiation to desired lineages requires navigating alternating developmental paths that often lead to unwanted cell types. Hence, comprehensive developmental roadmaps are crucial to channel stem-cell differentiation toward desired fates. To this end, here, we map bifurcating lineage choices leading from pluripotency to 12 human mesodermal lineages, including bone, muscle, and heart. We defined the extrinsic signals controlling each binary lineage decision, enabling us to logically block differentiation toward unwanted fates and rapidly steer pluripotent stem cells toward 80%-99% pure human mesodermal lineages at most branchpoints. This strategy enabled the generation of human bone and heart progenitors that could engraft in respective in vivo models. Mapping stepwise chromatin and single-cell gene expression changes in mesoderm development uncovered somite segmentation, a previously unobservable human embryonic event transiently marked by HOPX expression. Collectively, this roadmap enables navigation of mesodermal development to produce transplantable human tissue progenitors and uncover developmental processes. VIDEO ABSTRACT.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facts about Stem Cells and Importance of Them

Stem cells are undifferentiated biological cells that can differentiate into specialized cells and can divide (through mitosis) to produce more stem cells. They are found in multicellular organisms. In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocysts, and adult stem cells, which are found in various tissues. In ad...

متن کامل

The CliniCal appliCaTion of pluripoTenT Cells: The promise and The Challenges

Stem cells are distinguished from other cells by two characteristics: (1) they can divide to produce copies of themselves (self-renewal) under appropriate conditions and (2) they are pluripotent, or able to differentiate into any of the three germ layers: the endoderm (which forms the lungs, gastrointestinal tract, and interior lining of the stomach), mesoderm (which forms the bones, muscles, b...

متن کامل

Spermatogonia stem cells: A new pluripotent source for repairment in regenerative medicine

Recently new reports have proved the pluripotency of spermatogonial stem cells (SSCs) derived from male gonad. This pluripotent stem cells resembled Embryonic stem cells recognized as Embryonic Stem like cells (ES like cells). ES like cells forms sharp edge colonies that are immunopositive to pluripotency markers and have differentiation capacity to Ectodermal, Mesodermal and Endodermal layers....

متن کامل

Growth suppression effect of human mesenchymal stem cells from bone marrow, adipose tissue, and Wharton's jelly of umbilical cord on PBMCs

Objective(s):Immunosuppressive property of mesenchymal stem cells (MSCs) has great attraction in regenerative medicine especially when dealing with tissue damage involving immune reactions. The most attractive tissue sources of human MSCs used in clinical applications are bone marrow (BM), adipose tissue (AT), and Wharton's jelly (WJ) of human umbilical cord. The current study has compared immu...

متن کامل

Endotoxin-induced silencing of mesoderm induction and functional differentiation: role of HMGB1 in pluripotency and infection.

OBJECTIVES Mechanisms underpinning Gram-negative bacterial vaginosis-induced birth anomalies are obscure. Ethical issues limit such studies on peri-implantation-stage human embryos. Here we have used embryoid bodies (EBs) as an in vitro model to examine the effect of Gram-negative bacterial endotoxins/lipopolysaccharides (LPS) on the faithful induction of germ lineages during embryogenesis. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 166  شماره 

صفحات  -

تاریخ انتشار 2016